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ABSTRACT
TFTR

Significant improvements in plasma performance have been obtained in
TFTR as a result of lithium pellet injection and sputtering of molten
lithium. When the TFTR carbon limiter was conditioned with lithium we
observed intense bursts of electron cyclotron emission (ECE). The
bursts have been observed for several seconds both in the Ohmic
heating phase and neutral beam heating phase of D and D-T TFTR
plasmas. The ECE bursts consist of intense spikes of random amplitude
which last 5-30 microseconds. This phenomenon appears to be
associated with the extremely low edge density in these lithium gettered
plasmas and may result from the pitch angle scattering of slideaway
electrons by turbulent cells in the low density edge region.

PPPL

Abstract



MOTIVATION
TFTR

• Michelson diagnostic sees intense ECE bursts from TFTR
   plasma well conditioned with lithium.

• What causes this phenomenon?
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          1. Motivation



Phenomenology

Phenomenology
of 

ECE Bursts
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EFFECTIVE LITHIUM PELLET CONDITIONING LEADS TO
IMPROVED TFTR PLASMA PERFORMANCE

TFTR

• Li conditioning can significantly reduce edge recycling and
  density:

     -  leads to improved beam penetration.

• Experiments with extensive Li pellet conditioning conducted
   during 1994/5:

    - Improved core confinement.

    - Large electron temperature reheat after NBI (especially in D-T).

    - Intense bursts on the Michelson ECE diagnostic
      (Trad ≤ 170 keV).
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Intro to Phenomenlogy



 Absolutely calibrated, Michelson interferometer shares view with GPC-I.
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INTENSE NON-THERMAL ECE ON MICHELSON
NOT SEEN ON GRATING POLYCHROMATORS
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DURING INTENSE MICHELSON ECE SPIKES 
GPC-I MEASURES ~ 100 eV FLUCTUATIONS
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DURING INTENSE MICHELSON ECE SPIKES 
GPC-2 SHOWS NO CLEAR EVIDENCE OF SPIKES
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BURST FLUCTUATION BANDWIDTH ~ 100 kHz
TFTR

Fluctuation Spectrum
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Fast (500 kHz digitized) GPC-1 data show individual ECE spikes last 
5-10 µs with peak radiation temperatures ~ 4 keV.



83384 YG1/FM Cold Wave
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ECE BURSTS INTENSITY INCREASES WITH DECREASING 
EDGE DENSITY

Trad vs nedge 10/28/97
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Interpretation
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of
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ECE DIAGNOSTIC PERFORMANCE CONSTRAINS DATA
INTERPRETATION

TFTR

• TFTR ECE diagnostics have only limited capabilities:

        - Michelson not suitable for fast phenomena (< 20 ms),
           measures Fourier transform of ECE.

        - Grating polychromators not suitable for broadband
          phenomena (> 50 GHz) .

        - Midplane views limit ability to determine location of a
          non-thermal ECE source.
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Intro to Diagnostics



TFTR ECE DIAGNOSTICS: Michelson
TFTR

• Measures from below fundamental up to fourth harmonic ECE:

        - has lowpass filter at ~ 540 GHz.

• Scans ECE spectrum in ~ 5 ms.

• Relies on Fourier transform of the Michelson interferometer
   output:

        - analysis assumes a quasi-stationary ECE spectrum during
          a scan.

        - large fluctuations in ECE spectrum can result in analysis
          artifacts.
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3. ECE Diagnostics - Michelson



SCHEMATIC OF ECE MICHELSON INTERFEROMETER
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INTENSE ECE BURSTS ON MICHELSON
SIGNAL SUPPRESSED DURING EDGE INFLUX
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83526 YM Raw@4.7s
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TFTR ECE DIAGNOSTICS: Grating Polychromators (GPCs)
TFTR

• Two GPCs, separated toroidally by 126o, measure second
   harmonic ECE:

          -  lowpass filters in waveguide run reject second order
             (fourth harmonic ECE).

• Second order rejection is not perfect due to finite filter rolloff.

• GPC-2 has better second order rejection:

         - GPC-1 has 3 lowpass filters.

             - GPC-2 has 6 lowpass filters.
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4. ECE Diagnostics - GPCs



BURSTS ARE AT FREQUENCIES ABOVE THIRD HARMONIC ECE
OR MAY BE AT OR BELOW ECE FUNDAMENTAL

TFTR

• Not second harmonic ECE:

     - since bursts not seen on GPC-2.

• Not third harmonic ECE:

      - since for Trad ~ 100 keV expect ~ 50 GHz downshift of third
        harmonic ECE to second harmonic.

• GPC-1 bursts may be second order leakage of fourth harmonic ECE.

• Bursts may also be at or below fundamental ECE frequencies:

     - since bursts are seen on Michelson but not GPC-2.
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      5. ECE Data Interpretation - 1



SUMMARY OF BURST CHARACTERISTICS
TFTR

• Burst emission frequency either greater than ECE third harmonic
   or may be at or below ECE fundamental.

• Source at r/a > 0.7 (from transient edge influx events).

• Trad  ≤ 170 keV.

• Most intense during NBI (but sometimes seen in OH phase).

• Burst intensity increases with decreasing carbon limiter
   recycling and edge density.

• Intensity grows and decays on time scale of stored energy,
   so could be pressure driven.
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5. ECE Data Interpretation - 2



Mechanism
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POSSIBLE BURST MECHANISMS REQUIRE RUNAWAY
ELECTRONS - BUT HOW ARE THEY GENERATED?

TFTR

• Trad > 100 keV implies presence of runaway electrons.

• But electron thermal velocity ~ 0.1 x critical velocity for runaway
   electron generation using measured loop voltage ( < 0.2 V/m).

• Could runaway electrons be accelerated by a large internal
   inductive electric fields?
   [Chu, Phys. Plasmas 4 3306 (1997)]

• Could runaway electrons be accelerated/scattered by strong local
   electric fields generated at an internal transport barrier?
   [Bell, Invited Paper kWeaI1.02, this conference]
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     Problems with Mechanism



BURST GENERATION MECHANISMS - Cherenkov Emission
TFTR

• If bursts are at frequencies below the ECE fundamental
   frequency, could be Cherenkov resonance with runaways.
   [ Freund, Lee & Wu, Phys. Rev. Lett. 40 1563 (1978)]

• GPC-1 should not see below ECE fundamental, so why does
   it measure small bursts?
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     Cherenkov Emission



BURST GENERATION MECHANISMS - Edge Turbulence
TFTR

• If bursts are at frequencies above the ECE third harmonic, could
   be pitch angle scattering of runaways by fluctuations in the
   edge density.

• 20% edge density fluctuations have been measured by Beam
  Emission Spectrocopy (BES) in similar TFTR plasmas.
   [ Fonck et al., Phys. Rev. Lett. 70 3736 (1993)]

PPPL
     Turbulent Scattering



INTENSE ECE BURSTS MAYBE DUE TO RUNAWAY 
ELECTRONS SCATTERED BY EDGE TURBULENCE

Possible Mechanism
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Edge Turbulence

Runaway electron population may 
be present in low density edge of 
lithium conditioned plasmas.
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SUMMARY
TFTR

• Intense bursts in plasmas with very low edge densities.

• Emission frequency either above the third ECE harmonic, where
   the plasma is optically thin, or below ECE fundamental.

• Evidence for the source being near the plasma edge.

• Trad > 100 keV implies runaway electrons, but runaway
   generation process is unclear.

• Bursts most intense during NBI, possibly pressure driven.

• Bursts mechanism is not understood.
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